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INTRODUCTION

It is well known that the movements of exchange rate changes are
heteroskedastic. The autoreqgressive conditional heteroskedasticity
(ARCH) model introduced by Engle (1982) is a convenient way to formulate
the conditional variances as a function of past observations. This
class of models has been used by, for examples, Diebold and Nerlove
(1988), Diebold and Pauly (1988), Domowitz and Hakkio (1985) and Hsieh

(1987) to study the dynamics of foreign exchange rates.

Recently Tsay (1987) shows that the class of ARCH processes is a
special case of the class of random coefficient autoregressive (RCA)
processes, studied extensively by Nicholls and Quinn (1980, 1982} and
Quinn and Nicholls (1981, 1982). The relationship between these two
types of models can be illustrated by the following example. Consider a

RCA(3) process,
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The conditional variance of this RCA(3) process is
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Vt(.) is the conditional variance operator based on the information

available up to time t. Next, let us consider a ARCH(2,1) process



defined by
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It can be shown that the RCA(3) model is equivalent to the ARCH(2.1)
model up to the second-order conditional moments if the following

conditions are satisfied:
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In general any given ARCH model is related to a RCA model via a set of

. . (& §)
non-linear constraints.

It is clear that an ARCH process is a more parsimonious way to
study heteroskedasticity. However, as shown by Pagan and Sabau (1987),
vhen a RCA process is mis-specified as an ARCH process, maximum
likelihood method will give a biased estimator for the conditional mean.
It is better to check for the presence of RCA effects before we estimate
an ARCH specification unless ve have a prior information to rule out the
covariance terms (or to impose the stringent restrictions required to
reduce a RCA process to an ARCH process; see footnote (1)). Moreover,
the RCA specification allovs both the magnitude and the sign of the past
observations to affect the conditional variance. This feature may be
useful for modelling financial prices whose wvolatility is related to

both the size and the direction of price movements (see Nelson (1987),



Black (1976) and Christie (1982)).

The purpose of this paper is to investigate if the RCA model an
appropriate choice to study the time series properties of changes in
exchange rates. The plan of this paper is as follows. The procedures
uéed to study uni-variate RCA models are introduced in section one. The
empirical results are reported in section two. In section three the
latent factor approach suggested by Diebold and Nerlove (1988) is
- proposed to estimate a multi-variate RCA model. The multi-variate model
results are also reported in that section. The concluding remarks in

section four ends the paper.

I: Fittng A UnivarRiaTE RCACP) MobDEL.

Consider a time series record {Xi,...,xT}. The p-th order random

coefficient autoregressive process (RCA{(p)) is given by
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Nicholls (1986) suggests a modified Box-Jenkins three-step modeling
procedure for this class of time series model. 1In the first step we
have to determine the order of the process using the AIC or SBC
criterion and to test for the randomness of coefficients. It is well

known that changes in exchange rates show little, if any, serial



correlations. Therefore more attention is put on the test for

coefficient randomness. The data are assumed to follow a RCA{(p) model

if the test for coefficient randomness indicates that there is
coefficient randomness in the first p-th order models but not in the
(p+tl)-th order model. In the second stage a maximum 1likelihood
procedure is used to estimate the RCA(p) model. Finally, the
standardized residuals are used to evaluate if the RCA(p) model

adequately represents the data.

The T statistic derived in Quinn and Nicholls (1982) is used to
test the null hypothesis that the data are generated by a fixed
coefficient model. The statistic is defined as
T =T if ¢ is (semi-)positive definite,

=0 otherwise,
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See Quinn and Nicholls (1980) for more detailed discussion on ; and the
matrix G. The null hypothesis is rejected at the « % significance
level if

T > 2
X<p+1>p/z,01 ‘
The 7 statistic has an intuitive interpretation. Re-arranging the

terms, we can show that Tt equals
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the sample covariance of z, and =

N weighted by the sample variances of

z, and ;f. It is obvious that 7 is zero under the null hypothesis.

In this paper the parameters of the RCA(p) model are estimated by
the maximum likelihood method. The likelihood of the model, L, is given

by

-T
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where ht is the conditional variance and is equal to az+yzt. Quinn and
Nicholls (1981) shows that the maximum likelihood estimators obtained
from maximizing equation (10) are strongly consistently and satisfy a
central limit theorem. The maximum likelihood estimates are computed by
the Davidon-Fletcher-Powell (DFP) algorithm. Non-negativity constraints

are explicitly imposed to ensure both the variances and conditional

variance are positive.

Finally, the Box-Pierce portmanteau Q-statistics computed from the
standardized residuals and the squares of these residuals are used to

evaluate the adequacy of the estimated RCA models. The standardized



residual is defined as

o4
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wvhere the "hat" denotes maximum likelihood estimates. The Q-statistic
computed from rt's is used to detect serial correlations not captured by
the estimated model. The Q-statistic calculated from rf's is used to
test for serial correlations in the second moment or, equivalently, the
heteroskedasticity not explained by the estimated model {(see McLeod and

Li (1983)).

II: EMPIRIcAL RESULTS OF THE UNIVARIATE RCA MoODELS

This section reports the results of fitting uni-variate RCA models
to changes in exchange rates. The end-of-week US Dollar/British Pound
{BP}, US Dollar/Deutsché Mark (DM) and US Dollar/Swiss France (SF)
exchange rates are used. The data are transformed by taking the first

logarithmic differences and multiplied by 1000.%

The T-statistics (not reported) suggest that both BP and SF follow
RCA(3) processes and DM follows a RCA(2) process. The covariance
estimates obtained from the higher order processes were non-positive
definite. However, the Box-Pierce Q-statistic computed from the squares
of the standardized residuals indicated that the RCA(2) model does not
explain the conditional heteroskedasticity of DM satisfactory. Then a
RCA(3) model is fitted. It is found that the RCA(3) model passed the
diagnostic tests. Therefore a RCA(3) model for each of these three

exchange rates are reported.



The maximum likelihood estimates are reported in Table 1. 1In these
three cases the covariance terms are usually significantly different
from zero. The terms in the covariance matrix are large compared to the
fixed autoregressive coefficients. Hence the observed exchange rate
changes are expected to show more wild fluctuations than a fixed

coefficient stationary time series model. This also may explain why it
is so difficult to detect serial correlations in changes in exchange
rates under a constant coefficient time series framework. Moreover the
estimated variance-covariance terms indicated that there is a good
chance for a large (small) change to be followed by another large

(small) change, a phenomenon observed by Cornell and Dietrich {1978).

The sample Box—Piercé Q-statistics are also reported in Table 1.
Q1(10) and 01(20) are the respectively the 10-lag and 20-lag
Q-statistics computed from the standardized residuals while 02(10) and
02(20) are the (Q-statistics computed from the squares of the
standardized residuals. These sample Q-statistics are smaller than the
conventional critical values. The estimated models provide a reasonable
description on the patterns of the serial correlation and

heteroskedasticity.

III: A LATENT FACTOR MuLTI~-VARIATE RCA MoDEL

In this section we motive and estimate the multivariate RCA model
with a factor structure. Since the data we studied are exchange rates

against the US Dollar, the movements in these series are likely to be



correlated. For instance, this happens when the market is reacting to
the news about the US economy. The conditional covariances, like the
conditional variances of the individual series, may be time-varying. On
the other hand there are news that are specific to individual countries.
These country specific news make each exchange rate different from the
others. The latent factor structure suggested in Diebold and Nerlove
{1988) provides a convenient way to study this situation.® It assumes
that changes in exchange rates are made up of two components. One is
the common factor which exhibit conditional heteroskedasticity. This
common factor captures both the time-varying conditional variances and
conditional covariances. The second component is the countries specific

component which represents the shocks ™unique" to individual countries.

Another advantage of the 1latent factor approach is the huge
reduction in the number of parameters in the problenm. Consider a

general tri-variate RCA(3) model:
3
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£, and n,, are uncorrelated.
Xt is a 3x1 vector, ﬁ% is a 3x3 matrix of fixed coefficients, n,, is a
3x3 matrix of random coefficients, £, is a 3x1 error vector, U is a 3x3

error covariance matrix and C is a 9x81 covariance matrix of the random



coefficients. The total number of parameters is 411. It is easily seen
that the number of parameters explodes quickly either the number of
random variables or the number of lags involved. This makes the
estimation of such models extremely costly if not impossible. However,
vhen we impose a latent factor structure, we can reduce the number of

parameters dramatically. Consider the following multivariate latent

factor model;
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ft is the unobserved component that affects all exchange rates . It is
assumed to be uncorrelated with the individual error £€.. In equation
(14) ft is assumed to follow a RCA(3) model. ht is the conditional
covariance matrix of Xt. This covariance matrix is time-varying because
the conditional variance of ft is not constant over time. The number of

parameters in this multivariate RCA(3) model is 13.

It is seen that the multivariate latent factor RCA model has a
sound economic interpretation and is computationally less demanding. We
regard this modeling strateqgy, at least, is a practical way to describe

the interaction of the exchange rate series.

It is found from the univariate analysis that the fixed
autoreqgressive coefficients in these three exchange rate series are
similar to each other. Therefore the common factor is assumed to follow
a RCA(3) process and equations (13) and (14) is used to model the joint

dynamic properties of the three exchange rate series.

The log likelihood function of the multivariateilatent factor RCa
model is

£ = Zlinon - %Zlnlht} - Et(xt-Et-i(xt))'hzi(xt-EL—i(xt))’
vhere qu is the conditional expectations operator based on information
up to time t-1.The maximum likelihood estimates are obtained by using
the DFP algorithm‘"> to maximize the likelihood under the constraint As
+ Xz + A3 = 1. The constraint is need to ensure the parameters are

identified.” Non-negativity constraints are met by performing the

maximization with respect to the standard deviations instead of the
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variances. The maximization is performed sequentially. The parameters
are divided into two subsets. The first subset 61 has ?\_t and o
i=1,2,3, as its elements and the second subset 82 has the rest of the
parameters as its elements. We first set 61 = é:" and maximize the
likelihood with respect to 62 and obtain the estimate é:. Then we set

62 = 9; and maximize the function with respect to 91 and obtain €.

These procedures are repeated until the parameter values converged.

The maximum likelihood estimation results are reported in Table 2.
It is interesting to noted that the third lagged autoregressive
coefficient estimate, same as those in the univariate cases, is not
significance. The estimated variance-covariance terms (v,t's) are
similar to that of the DM. One of the covariance term is highly
significant. The maximized log likelihood is -7988 which is larger than
the sum of the individual maximized log 1likelihoods (-8554). This
increase in likelihood indicates there 1is a substantial gain in
information when the behavior of these exchange rate series is jointly

modelled.

1V: CoNncLUDING REMARKS

The heteroskedasticity in exchange rate changes is examined w'ith a
general «class of stochastic ©processes: the random coefficient
autoregressive (RCA) processes. The results suggest that the class of
RCA models 1is a reasonable alternative to study the time-varying
volatility of financial price series. The individual series of exchange

rate changes is explained adequately by a RCA(3) model. The joint
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behavior of the three exchange rate series is modelled by a

multi-variate latent factor RCA model with the common factor follows a

RCA(3) process.

It is known that an ARCH model is a special case of an RCA model.
The RCA model 1is a more flexible way to model conditional
heteroskedasticity. The price for such flexibility is the increase in
the number of parameters to be estimated. However, mis-specifying a RCA
model as an ARCH model will result biased estimators. Therefore it is
advisable to check for coefficient randomness before we specify an ARCH

model for conditional variances.
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FooTNOTES

(1)

(2)

(3)

(4)

See Theorem 1 in Tsay (1987) for a formal statement of the
relationship between a given ARCH model and the corresponding RCA
model. \

The data were scaled up to avoid underflov when the multi-variate
model is estimated.

Bollerslev (1987) suggests an alternative approach to model the
multi-variate GARCH model which assumes the correlations are
constant over time,

The Kalman filter technique is used to compute the 1likelihood
function. See Diebold and Nerlove (1988) and Nerlove et al (1988)
for more details on the computational aspects of estimating the
multivariate latent factor model. Diebold and Nerlove (1988)
discusses the‘ possible improvements that can be made on this

modelling strategy.

(5) Diebold and Nerlove (1988) constrains the variance of ft equals to

1 for identification purposes. However, this constraint is more
difficult to enforce in this type of Kalman filter recursive

estimation procedure.
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Table 1. Results of Univariate RCA Models

BP DM SF
B, 0.0841 | 0.1233 | 0.0844
(2.49) (4.04) (2.74)
8, 0.0997 | 0.1516 | 0.1155
(2.96) (4.88) (3.92)
B, 0.0321 | -.0207 | -.0211
(0.93) | (-.66) (-.66)
Q. 0.2189 | 0.1322 | 0.1894
(4.92) (3.75) (5.50)
Q. 0.0192 | 0.1478 | 0.1213
(0.57) (6.07) (4.74)
Q. -.1179 | 0.0064 | 0.0243
(-3.02) | (0.26) (0.74)
" 0.2394 | 0.1936 | 0.1411
(5.11) (4.48) (4.27)
Q_ 0.0859 | 0.0379 | 0.1186
(2.40) (1.34) (3.65)
Q_ 0.3318 | 0.2055 | 0.3118
(5.89) (5.44) (7.45)
o? 75.181 | 102.76 | 121.84
(4.92) (13.1) (11.7)
L -2799 -2824 ~2931
Q,(10) 11.6 6.83 3.66
Q, (20) 15.1 15.5 14.6
Q,(10) 6.21 10.6 8.78
Q,(20) 14.6 26.7 25.8
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Table 2: Results of the Multi-variate Factor RCA Model

0.2372 | 0.3582 | 0.4046 | 10.691 | 4.3963 | 6.8275
(5.25) (19.2) === (10.7) (4.40) (6.83)

0.1203 | 0.1482 | -.0243
(3.57) (4.55) (-.72)

v v v v ¥ v v
14 12 13 22 23 33 o

0.2197 0.1376 0.0149 0.1794 0.0453 0.2659 618.23
(9.06) (4.60) (0.45) (7.41) (1.34) (12.3) (20.00)
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